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Abstract. Land surface temperature (LST) is a key variable within the Earth’s climate system and  a necessary input parameter 

required by numerous land-atmosphere models. It can be directly retrieved from satellite thermal infrared (TIR) observations, 10 

but cloud contamination results in many spatial missing. To investigate the temporal and spatial variations of LST in China, 

long-term, high-quality, and spatio-temporally continuous LST datasets (i.e., all-weather LST) are urgently needed. Fusing 

satellite TIR LST and reanalysis datasets is a viable route to obtain long time-series all-weather LST. Among satellite TIR 

LSTs, the MODIS LST is the most commonly used and a few all-weather LST products generated in this way have been 

reported recently. However, the publicly reported all-weather LSTs are not available during the temporal gaps of MODIS 15 

between 2000 and 2002. In this context, we report a daily 1-km all-weather LST dataset for the Chinese landmass and 

surrounding areas – TRIMS LST. Different from other products, the TRIMS LST begins on the first day of the new millennium 

(i.e., January 1, 2000). The TRIMS LST was generated based on the Enhanced Reanalysis and Thermal infrared remote sensing 

Merging (E-RTM) method. Specifically, the original RTM method was used to generate the TRIMS LST outside the temporal 

gaps. Two newly developed approaches, including the Random-Forest based Spatio-Temporal Merging (RFSTM) approach 20 

and Time-Sequential LST based Reconstruction (TSETR) approach, were used to produce Terra/MODIS-based and 

Aqua/MODIS-based TRIMS LSTs during the temporal gaps, respectively. Thorough evaluation of the TRIMS LST was 

conducted. A comparison with the GLDAS and ERA5-Land LSTs demonstrates that TRIMS LST has similar spatial patterns 

but higher image quality, more spatial details, and no evident spatial discontinuities. Further comparison with MODIS and 

AATSR LSTs shows that TRIMS LSTs agree well with them, with mean bias deviation (MBD) between -0.40 K and 0.30 K 25 

and standard deviation of bias (STD) between 1.17 K and 1.50 K. Validation based on ground measured LST at 19 ground 

sites showed that the mean bias error (MBE) of the TRIMS LST ranged from -2.26 K to 1.73 K and the root mean square error 

(RMSE) was 0.80 K to 3.68 K, with no significant difference between the clear-sky and cloudy conditions. The TRIMS LST 

has already been used by scientific communities in various applications such as soil moisture downscaling, evapotranspiration 

estimation, and urban heat island (UHI) modelling. The TRIMS LST is freely and conveniently available at 30 

https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 2021).  
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1 Introduction 

Land surface temperature (LST) is a key variable related to the energy exchange at the interface between the land surface and 

the atmosphere. It is the result of the thermal feedback of various ground surface to incident solar radiation and atmospheric 35 

downward radiation. Therefore, it is a necessary input parameter required by numerous land‒atmosphere models (Jiang and 

Liu, 2014; Li et al., 2013b, 2023b). LST have been widely used in a variety of studies, such as surface evapotranspiration (ET) 

estimation (Anderson et al., 2011; Ma et al., 2022), urban heat island (UHI) modelling (Alexander, 2020; Liao et al., 2022), 

drought monitoring (Zhang et al., 2017), and ecological assessment (Sims et al., 2008).  

In the past four decades, especially since the beginning of the new millennium (i.e., 2000), China and its surrounding areas 40 

have experienced rapid economic development and population growth, accompanied by notable changes to the natural 

environment (Yang and Huang, 2021). Meanwhile, China has adopted a series of interventions to protect the environment 

since the 1980s, such as the Grain to Green Program (Wang et al., 2017),Three-North Shelter Forest Program (Zhai et al., 

2023), and Red Lines of Cropland (a policy to ensure that Chinese arable land does not drop below 120 million hectares). 

These interventions have played a key role in changing the land use/cover and the regulating climate change (Chen et al., 45 

2019a). In addition, with the warming climate, extreme weather and meteorological disasters occur frequently in China and its 

surrounding areas (Chen et al., 2019b). Since LST is highly sensitive to land cover change, heat waves, droughts, and 

vegetation information and is an indicator of global climate change (Mildrexler et al., 2018; Peng et al., 2014), it is important 

to investigate the spatial and temporal variations of LST for these areas. This requires a long-term, high-quality, and spatio-

temporally continuous LST dataset. 50 

LST can be obtained through in-situ observations, model simulations, and remote sensing retrievals. However, LST is highly 

spatially and temporally heterogeneous and affected by various factors such as land cover, soil type, topography, climatic, and 

meteorological conditions (Liu et al., 2006; Zhan et al., 2013). In-situ observations based on spatial 'point measurement' are 

not able to obtain spatially continuous LSTs, and the current model simulation suffer from coarse spatial resolution. In contrast, 

satellite remote sensing, which has advantages of better spatial continuity, larger coverage, good ability for repeating 55 

observations, and much higher spatial resolution, has become an important way to obtain LST for large areas (Li et al., 2013b). 

Satellite thermal infrared (TIR) remote sensing can directly obtain the regional and global LST efficiently. A series of satellite 

TIR LST products are currently available to users, including platforms such as polar orbiting and geostationary satellite 

platforms. Among the satellite TIR LST products, the MODIS LST products is the most widely used because of its global 

coverage, long time-series (since February 24, 2000 for Terra and since July 4, 2002 for Aqua), high quality, and good 60 

accuracy (Aguilar-Lome et al., 2019; Sandeep et al., 2021; Wan, 2014). 

Although MODIS LST products (especially with a 1-km spatial resolution) have shown good performance in related 

applications, they generally have significant spatial absences due to cloud contamination, especially in low and middle latitudes 

in China (e.g., the Tibet Plateau and southern China) (Duan et al., 2017). Cloud contamination restricts the LST products from 
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playing a more critical role in subsequent applications (Li et al., 2023b). Furthermore, Terra/Aqua MODIS has temporal gaps 65 

in 2000-2002; thus, it is not easy to generate the all-weather LST products during these gaps. 

In recent years, many methods have been developed to generate all-weather LSTs based on satellite TIR LSTs and other data 

(Jia et al., 2022; Zhang et al., 2022). Typical methods include spatial-temporal interpolation, surface energy balance (SEB), 

and multisource data integration. The spatial-temporal interpolation methods take advantage of temporal variation patterns of 

the LST as well as the spatial characteristics. However, the results obtained by the above methods are the hypothetical LSTs 70 

under clear-sky conditions, not the LST under the cloud-contaminated regions. LST (Martins et al., 2019). To solve the above 

problems, SEB is proposed as physical method (Jin and Dickinson, 2000). Under cloudy conditions, this method considers 

longwave radiation and solar radiation as influences on the LST. Martins et al. (2019) used the SEB method to successfully 

fill the missing LSTs using land surface parameters provided by the European Satellite Application Facility on Land Surface 

Analysis (LSA-SAF) and generate the all-weather LST product (MLST-AS). In addition, a more general approach that 75 

incorporates the clear-sky LSTs into the SEB has recently been developed to estimate the LSTs under cloud- contaminated 

regions based on the MODIS and Visible infrared Imaging Radiometer (VIIRS) data (Jia et al., 2021).  

At present, multisource data integration methods have been widely used to generate seamless all-weather LSTs. Present 

multisource data fusion methods mainly to integrate TIR LSTs with satellite passive microwave (PMW) observation or 

reanalysis data. PMW data can be used for estimating all-weather LST retrievals because they are able to observe LST 80 

information under cloud-contaminated regions (Holmes et al., 2009; Zhou et al., 2017). However, there are limitations in 

obtaining all-weather LST from PMW observations. First, the spatial resolution of PMW data differs significantly from TIR, 

such as the Advanced Microwave Scanning Radiometer 2 (AMSR2) with ~10 km spatial resolution. the spatial coverage of 

the PMW data is incomplete because there are orbital gaps. Third, the temperature information retrieved from PMW 

observations contains information from the subsurface, which is physically different from the TIR LST, which provides the 85 

skin temperature (Zhou et al., 2017). Compared with the PMW data, reanalysis data can provide spatially continuous LSTs 

and related surface parameters; thus, it can act as an alternative basis to obtain the all-weather LST (Long et al., 2020; Ding et 

al., 2022). A typical method is the Reanalysis and Thermal infrared remote sensing Merging (RTM) method proposed by 

Zhang et al. (2021) for integrating the GLDAS and MODIS LSTs for the Tibetan Plateau. 

In recent years, based on the aforementioned three typical methods, various all-weather LST datasets were released (Duan et 90 

al., 2017; Hong et al., 2022; Jia et al., 2022; Li et al., 2021a; Metz et al., 2017; Muñoz-Sabater et al., 2021; Yao et al., 2023; 

Yu et al., 2022). However, all-weather LST data with both high temporal resolution (4 observations per day or higher) and 

high resolution (1 km or higher) since 2000 for the Chinese landmass and the surrounding areas are still rare. 

In this study, we proposed the enhanced RTM (E-RTM) method to produce a daily (four observations per day) 1-km all-

weather LST dataset for the Chinese landmass and surrounding areas  (19°N-55°N, 72°E-135°E), which is known as the 95 

Thermal and Reanalysis Integrating Moderate-resolution Spatial- seamless LST (TRIMS LST). The E-RTM method includes 

three modules (Sect.3). The original RTM method is used to produce the TRIMS LST outside the temporal gaps. Additionally, 

based on the physical properties of the LST time component decomposition model, Terra/MODIS-based and Aqua/MODIS-
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based TRIMS LST during the temporal gaps are produced. TRIMS LST was evaluated in this study using in-situ sites to 

provide better-quality data for the study of Urban thermal environment, meteorology and hydrology. 100 

2 Datasets 

2.1 Satellite data and reanalysis data 

In this study, the main satellite data used are the 1-km daily MODIS LST/emissivity product (MOD11A1: February 2000 to 

December 2021; MYD11A1: July 2002 to December 2021) in version 6.1. This LST product was produced based on the 

generalized split-window algorithm and has good accuracy for homogeneous surfaces (Wan, 2014). As mentioned previously, 105 

it is usually used as the basis in the reconstruction of all-weather LSTs. In this study, this product is also used as a basis data 

for producing the TRIMS LST. The other used MODIS datasets used include: (1) the 1-km 16-day Normalized Difference 

Vegetation Index (NDVI) product (MOD13A2: February 2000 to December 2021) in version 6.1; (2) the 500-m daily 

Normalized Difference Snow Index (NDSI) product(MOD10A1: February 2000 to December 2021) in version 6; and (3) the 

500-m daily MODIS land surface albedo product (MCD43A3: February 2000 to December 2021) in version 6.1. All of the 110 

above products are available at EARTHDATA (https://earthdata.nasa.gov/). In addition to generation and evaluation of the 

all-weather LST, we also collected (1) the 90-m Shuttle Radar Topography Mission Digital Elevation Model data (SRTM 

DEM; http://srtm.csi.cgiar.org); (2) the 30-m yearly China land cover dataset (2000-2015) from Zenodo (CLCD, 

https://doi.org/10.5281/zenodo.4417810) (Yang and Huang, 2021) and (3) the 1-km daily ENVISAT/AATSR LST product 

(May 2002 - April 2012) (https://www.ceda.ac.uk/). 115 

The main reanalysis data used in this study are the Global Land Data Assimilation System assimilation (GLDAS) data provided 

by the Goddard Earth Sciences Data and Information Services Center (GES DISC) (Rodell et al., 2004). Specifically, the 0.25° 

3-hourly LST from the GLDAS Noah model between January 2000 and December 2021 was used as another input of the RTM 

method. In addition, we also collected the 0.1° hourly ERA5-Land LST data (Muñoz-Sabater et al., 2021), and its LST was be 

compared with the generated TRIMS LST. 120 

2.2 Ground measurements 

Table I shows 19 ground sites that recorded longwave radiation data for different time spans. According to geographical 

locations and land cover types provided in Table I, it is clear that they are distributed in different climate zones. This indicates 

that they encompass a wide range of land surface and climatic situations for adequate validation of the TRIMS LST. The 

measurement device at the selected ground station includes a long-wave radiometer and four-component radiometers, 125 

including CNR1, CNR4, and CG4 (Kipp & Zonen, Netherlands; https://www.kippzonen.com/). According to the specifications 

of these radiometers, the uncertainties in daily total for longwave radiation measurements are 3% - 10%. With the measured 

incoming and outgoing longwave radiation, the LST of the land cover type within the field-of-view (FOV) of the radiometer 

can be calculated through the radiative transfer equation in the form of the Stephan-Boltzmann's law (Ma et al., 2021). 
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Considering the uncertainties of the longwave radiation measurement, the uncertainties of the calculated in-situ LSTs are 130 

approximately 0.6 K-1.2 K (Xu et al., 2013; Yang et al., 2020; Ma et al., 2021). 

Spatial representativeness of ground sites has different degrees of influence on validation of TIR-based LST using in-situ LST. 

In this study, a newly developed indicator (μREP) proposed by Ma et al. (2021) was implemented to carefully quantify the 

spatial representativeness of each site. For the 19 sites, the calculated μREP was 0.31 K to 0.83 K, indicating good to acceptable 

representativeness of these sites for the validation of a 1-km LST.  135 
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Table I: Details of the 19 selected ground sites and their measurements.  

Site Latitude and 

Longitude 

(°N, °E) 

Elevation 

(m) 

Radiometers Height  

(m)  

Diameter 

(m) 

Surface type Period μREP 

(K) 

Source 

Arou (ARO) 38.05, 100.46 3033 CNR4 5 37.32 Subalpine meadow 2013-2021 0.82 HiWATER 

Daman (DAM) 38.86, 100.37 1556 CNR1 12 89.57 Farmland 2013-2021 0.31 HiWATER 

Desert (DET) 42.11, 100.99 1054 CNR4 6 44.78 Desert 2015-2021 0.45 HiWATER 

Dashalong (DSL) 38.84, 98.94 3739 CNR4 6 44.78 Marsh alpine meadow 2013-2021 0.54 HiWATER 

Ebao (EBA) 37.95, 100.92 3294 CNR1 6 44.78 Alpine Meadow 2013-2016 0.61 HiWATER 

Gobi (GOB) 38.92, 100.31 1562 CNR1 6 44.78 Gobi 2013-2015 0.33 HiWATER 

Huazhaizi (HZZ) 38.77, 100.32 1735 CNR1 6 44.78 Desert 2015-2021 0.35 HiWATER 

Sidaoqiao (SDQ) 42.00, 101.14 873 CNR1 10 74.64 Tamarix 2013-2021 0.82 HiWATER 

Shenshawo (SSW) 38.79, 100.49 1555 CNR1 6 44.78 Desert 2014-2015 0.42 HiWATER 

Huailai (HLA) 40.35, 115.79 480 CNR4 5 37.32 Farmland 2013-2020 0.81 HBE 

D105 33.06, 91.95 5039 CNR1 1.34 10.00  Subalpine meadow 2002-2004 0.82 CEOP-

CAMP 

Gaize (GAZ) 32.31, 84.06 4416 CNR1 1.49 11.12 Barren land 2002-2004 0.80 CEOP-

CAMP 

Guantao(GUT) 36.52, 115.13 30 CNR1 15.7 117.19 Farmland 2009-2010 0.72 HBE 

Changbaishan (CBS) 42.40, 128.10 736 CNR1 6* 44.78 Mixed forest 2003-2005 0.83 China Flux 

Daxing (DXI) 39.62, 116.43 20 CNR1 28 208.99 Farmland 2008-2010 0.78 HBE 

Dinghushan (DHS) 23.17, 112.53 300 CNR1 19* 141.82 Broad-leaved evergreen forest 2003-2005 0.44 CERN 

Maqu (MQU) 33.89, 102.14 3423 CNR1 1.5 11.20 Grassland 2010 0.56 NIEER- 

CAS 

Qianyanzhou (QYZ) 26.74, 115.06 75 CNR1 1.8 13.44 Evergreen coniferous forest 2003-2005 0.52 CERN 

Tongyu (TYU) 44.42, 122.87 184 CG4 3 22.39 Farmland 2003-2004 0.49 CEOP-

CAMP 

Note: The ground sites were operated by different field campaigns or programs. CERN: Chinese Ecosystem Research Network (Pastorello et al., 2020); CEOP-CAMP: the Coordinated Energy and 

Water Cycle Observation Project (CEOP) and Asia-Australia Monsoon Project (CAMP) (Ma et al., 2006; Liu et al., 2004); China Flux (Pastorello et al., 2020; Zhang and Han, 2016); HBE: Haihe 140 

experiment (Guo et al., 2020; Liu et al., 2013); HiWATER: Heihe Watershed Allied Telemetry Experimental Research (Che et al., 2019; Li et al., 2013a; Liu et al., 2011, 2018); NIEER-CAS: 

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (Wen et al., 2011). 
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3. Methodology 

TRIMS LST is generated based on the E-RTM method, which contains three modules as shown in Fig.1. Module I runs the 145 

original RTM method (Zhang et al., 2021) to produce the daily all-weather LST at the Terra (Aqua) satellite overpass time 

from DOY 55 of 2000 (DOY 185 of 2002) to DOY365 of 2021 by merging MOD11A1 (MYD11A1) and GLDAS LSTs. 

Module II extends the beginning date of the MOD11A1 LST based all-weather LST to January 1 2000 through a Random-

Forest based Spatio-Temporal Merging (RFSTM) approach. Module III extends the beginning date of the MYD11A1 LST 

based all-weather LST to January 1 through a Time-Sequential LST based Reconstruction (TSETR) approach. 150 

3.1 Module I: the RTM method 

Details of the RTM method can be found in Zhang et al. (2021). For the convenience of readers, a brief description of RTM is 

provided here. In the temporal dimension, the time series of LST can be expressed as: 

d avg ins d avg d avg ins cld d ins( ) ( , ) ( , ) ( , )LST t t t LFC t t HFC t t t HFC t t= + +, , , , (1) 

where td is the day of year (DOY); tins is overpass time of a TIR sensor (i.e., MODIS) and tavg is the average observation time 155 

calculated from tins; LFC is the low frequency component that represents the intra-annual variation component of the LST 

under ideal clear-sky conditions; HFC is the high frequency component, which represents the sum of the diurnal LST variation 

and the weather variation component (WTC) under ideal clear-sky conditions; HFCcld is a correction term representing the 

impact on LST triggered by cloud contamination under cloudy conditions; and HFCcld is equal to zero under clear-sky 

conditions. In the RTM method, LFC, HFC, and HFCcld in Eq.(1) are first determined from the MODIS LST and the GLDAS 160 

LST. Then, the optimized models are determined for the three components according to their characteristics and their quality 

is improved by inputting their descriptors. Finally, three optimized components are integrated to generate the all-weather LST.  

3.2 Module II: the RFSTM approach 

The RFSTM approach was developed to predict the all-weather LST during the period of DOY 1-54 2000 during which the 

Terra/MODIS LSTs were not available. It is based on the fact that (i) the LST of a pixel in the temporal dimension is strongly 165 

affected by the meteorological conditions as well as the its underlying surface and (ii) the LSTs of many pixels at a certain 

time are closely related to their underlying surfaces (Ma et al., 2021). Therefore, RFSTM has two stages, namely, the temporal 

stage and the spatial stage. 
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 170 
Figure 1: Flowchart of the E-RTM method. Note that the date in this figure is in the format of YYYY+DOY. 
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In the temporal stage, the daily LSTs (LSTT) of a pixel Q in a certain period are modelled as: 
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where the subscript T denotes the temporal stage; the function fT expresses the mapping in temporal dimensions from 

descriptors to LST; XT denotes the matrix including LST descriptors’ time series (PT-i, i=1, 2, ..., m); and n is the number of 175 

days within the temporal gap of Terra MODIS LST. 

Since the MODIS LST is not available as a reference for reconstruction and it is impossible to identify the different weather 

conditions (e.g., clear-sky and cloudy conditions), we used the mapping function fT to predict the 1-km all-weather LST. 

However, the relationship between LST and its descriptors cannot currently be analytically expressed currently. Fortunately, 

the machine learning has been reported to be effective in enhancing the spatial resolution of remote sensing images. 180 

Specifically, the random forest (RF) algorithm has shown good performance in mapping the correlation between LST with 

finer resolution and its descriptors with coarser resolution (Li et al., 2021a; Xu et al., 2021; Zhao and Duan, 2020). Therefore, 

the RF algorithm was employed here to realize fT. The temporal descriptors of LST include net longwave radiation, downward 

longwave flux, soil moisture profile (e.g., surface, 0-10 cm and 10-40 cm in GLDAS NOAH model-based data), wind-speed, 

soil temperature profile (e.g., surface, 0-10cm and 10-40 cm in GLDAS NOAH-model based data), air temperature and albedo. 185 

The training period for fT with RF was set as DOY 55 of 2000 to DOY 55 of 2001 (366 days in total), and the prediction period 

for LSTT was from DOY 1 of 2000 to DOY 54 of 2000. 

Considering that LST varies in both temporal and spatial dimensions, the spatial descriptors of LST should also be considered. 

Therefore, in the spatial stage, the LSTs (LSTS) at td in the prediction period are expressed as: 

S S S-1 d S-2 d S- df [ ( ) ( ) ... ( )]kN t N t N t=LST , (3) 190 

where the subscript S denotes the spatial stage; the function fS expresses the mapping in spatial dimensions from the descriptors 

to LST; k is the number of spatial descriptors of LST; and NS denotes the 1-km spatial descriptor of LST (NS-i, i=1, 2, ..., k). 

The spatial descriptors of LST include the DEM, latitude, and albedo. Note that (i) all the descriptors selected in the spatial 

stage are from the ancillary data with a high resolution (i.e., 1 km in this study); (ii) the albedo was selected in this algorithm 

because it involves the related information of surface emissivity such as vegetation growth, surface and subsurface moisture 195 

profiles and ground cover types. In the spatial stage, for a specific day (td), classify the target is classified into several subareas, 

including thick vegetation, sparse vegetation, barren land areas, snow-ice areas and water, using the1-km NDVI and NDSI. 

Then, for each subarea, the spatial descriptors of LST are input into fS via Eq. (3). Note that fS with RF is trained with the 1-

km LST and spatial descriptors of a day, and has (i) has the same observation time as td and (ii) has the smallest difference in 

the number of days between td. 200 
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To involve all spatio-temporal LST descriptors and guarantee the best performance of the output, the LSTs (LSTT and LSTS) 

need to be merged together to derive the final 1-km LST(LSTM): 

M M T, S f ( )=LST LST LST , (4) 

where fM denotes the RF-based mapping which indicates the contributions to the LSTM from LSTT and LSTS, respectively. 

For a single 1-km pixel, the RF-based regression contribution function is trained using LSTT (obtained by Eq. 2), LSTS 205 

(obtained by Eq. 3) and TRIMS LST in the training period. Then, fC is applied to estimate the 1-km all-weather LST in the 

prediction period via Eq. (4). 

3.3 Module III: the TSETR approach  

The TSETR approach was developed to estimate the all-weather LST during the period from DOY 1 of 2000 to DOY 184 of 

2002 during which the Aqua/MODIS LSTs were not available (with a temporal gap of 915 days). Previous studies have shown 210 

that it is possible to convert between the Terra MODIS LSTs and Aqua MODIS LST, considering land cover types, geolocation 

and season (Coops et al., 2007). Therefore, Terra/MODIS LSTs from 2000-2002 could be transformed to Aqua/MODIS LSTs 

(Li et al., 2018). Since the Terra/MODIS LST (MOD11A1) is available as a reference in the temporal gap, we generated an 

all-weather LST based on the TSETR approach, which is reconstruction rather than prediction. 

According to Eq. (1), the LST time series can be decomposed into LFC, HFC and HFCcld under all-weather conditions. 215 

Therefore, the TSETR approach has three stages. In the first stage, we need to estimate the LFC during the temporal gap at the 

Aqua overpass time. In this case, the temporal gap period was set as T1, and DOY 185 of 2002 to DOY 3 of 2005 was set as 

T2 (Fig.2). According to the analytical expression and physical meaning of LFC, there is no underlying trends of change within 

the three annual parameters (Tavg, A and ω) except for the periodic variation in the LST, which means that the LFC is cyclic-

stationary over a short time period (Bechtel, 2015; Weng and Fu, 2014; Zhu et al., 2022). Once the three annual parameters 220 

are determined, the LFC can be calculated for a given day.  

Therefore, in the TSETR approach, we assume that the LFC differences (∆LFC) between the Terra and Aqua overpass times 

in T1 and T2 are also cyclic-stationary. In T2, the LFC at the Terra/MODIS and Aqua/MODIS pixels are determined separately. 

In T1, the LFC at the Aqua overpass time of the pixel M can be expressed as: 

'

M-Aqua-T1 d avg M-Terra-T1 d avg M d avg

' ' '

M d avg M-Aqua-T2 d avg M-Terra-T2 d avg

( , ) ( , ) ( , )

( , ) ( , ) ( , )

LFC t t LFC t t LFC t t

LFC t t LFC t t LFC t t

 = +

 = −

, (5) 225 

where td is a specific day in T1; t’d is a specific day corresponding to td in T2; LFCM-Aqua-T1(td,tavg) and LFCM-Terra-T1(td,tavg) 

denote the LFC corresponding to the Aqua/Terra overpass time in T1, respectively; and LFC M-Aqua-T2(t’d,tavg) and LFC M-Terra-

T2(t’d,tavg) denote the LFC corresponding to the Aqua and Terra overpass time in T2, respectively.  
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Figure 2: Schematic diagram for estimating LFC in T1. 230 

HFC is estimated in the original RTM method using a nonlinear mapping established by multiple descriptors. In the second 

stage of E-RTM, the HFC within TI at the Aqua overpass time can be estimated by using its descriptors through RF (Xu et al., 

2021).  

M-Aqua-T1 d ins M M M M d M d M d M dM-Terra-T1 M d( , ) f ( , , , ( ), ( ), ( ), ( ))( ),HFC t t lat lon DEM NDVI t slp t t v tt t=  , (6) 

where latM, lonM, DEMM, NDVIM, slpM, αM, ΔtM and vM are the latitude, longitude, DEM, NDVI, slope, albedo, difference 235 

between tins and tavg , and the atmospheric water vapour content, respectively; and fM-Terra-T1 is an RF mapping model based on 

Terra MODIS data and its corresponding descriptors in T1.  

In Eq.(6), fM-Terra-T1  can be applied to estimate the HFC at the Aqua overpass time for the following reasons. First, the LSTs 

of the same pixel at different moments of a given day also meet the criteria condition of similar pixels in the RTM method 

(Zhang et al., 2021). This is the theoretical basis for the possibility of conversion between Terra/MODIS LSTs and 240 

Aqua/MODIS LSTs (Li et al., 2018), and according to the meaning of the HFC and the parameterization scheme, it should be 

highly correlated between similar pixels. Second, the factors used to build the mapping model can portray the effects of diurnal 

LST variation (ΔtM) and weather variation (vM). 

In the third stage, we need to estimate the HFCcld within the temporal gap period at the Aqua overpass time. In fact, HFCcld is 

essentially an atmospheric correction term and it is obtained from the GLDAS LST in the RTM method. According to the 245 

parameterization scheme of the RTM method, the clear-sky MODIS pixels and their corresponding GLDAS LSTs are the 

necessary inputs for the estimation of HFCcld. It is not possible to obtain HFCcld directly in this stage due to the lack of 

Aqua/MODIS in T1. 

Inspired by the Temporal Component Decomposition (TCD) method (Zhang et al., 2019) and other methods integrating PMW 

and TIR LST (Parinussa et al., 2016; Zhang et al., 2020), the initial value of the 1-km HFCcld can be expressed as: 250 
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cld-M-G-Auqa-T1 d ins M-G-Auqa-T1 d ins d avg d insM-Auqa-T1 M-Auqa-T1( , ) ( ) ( , ) ( )HFC t t LST t t LFC t t HFC t t= − −, , , (7) 

where HFCcld-M-G-Aqua-T1 is the initial 1-km HFCcld of M; and LSTM-G-Aqua-T1 is the initial 1-km LST of M under all-weather 

conditions. In this stage, the LST-related multidimensional temporal parameters are selected from GLDAS and an expression 

such as Eq. (2) is established for estimating LSTM-G-Aqua-T1: 

M-G-Auqa-T1 d ins M-G-Terra-T1 d ins M-G d ins M-G d ins M-G d ins

M-G d ins M-G d ins M-G d ins M-G d ins M-G d ins

M-G( , ) f ( ( , ), ( , ), ( , ), ( , ),

( , ), ( , ), ( , ), ( , ), ( , ))

LST t t t t t t t t t t

t t t t t t t t t t

Lnet Al SWE ST

SM C W T Lwd

=
, (8) 255 

where LnetM-G, AlM-G, SWEM-G, STM-G, SMM-G, CM-G, WM-G, TM-G and LwdM-G are the net longwave radiation, irradiance, snow 

water equivalent, soil temperature, soil moisture, vegetation canopy water content, wind speed, air temperature and 

downwelling longwave radiation respectively; and fM-G-Terra-T1 is an RF model based on Terra MODIS data and its 

corresponding GLDAS data in T1.  

As demonstrated in Section 3.2, a high-resolution LST can be represented as a linear/nonlinear mapping of coarse-resolution 260 

multidimensional temporal parameters, and similar mapping relationships can be obtained in adjacent moments and periods 

(Ding et al., 2022). Therefore, fM-G-Terra can be equally used to estimate the 1-km all-weather LST at the Aqua overpass time. 

Since Eq. (8) directly establishes a mapping between the coarse resolution reanalysis data and the 1-km LST, LSTM-G-Aqua and 

HFCcld-M-G-Aqua-T1 may contain systematic errors due to inadequate downscaling. Therefore, a convolutional implementation of 

a sliding window was used here to reduce the systematic error contained in HFCcld-M-G-Aqua-T1 (Chen et al., 2011; Wu et al., 265 

2015; Zhang et al., 2019). 

The schematic diagram of the convolutional implementation of the sliding window is shown in Fig.3. To fully reduce the 

systematic bias, the size of the sliding window should be slightly larger than a GLDAS pixel (26 × 26 km2). According to 

Zhang et al. (2019, 2021), HFCcld after optimization of M (i.e., HFCcld after eliminating the systematic errors) can be obtained 

by convolving the HFCcld of the surrounding similar pixels by combining geological factors (e.g., land surface type, spatial 270 

distance, and topography). This method is based on the interrelationship of different LSTs: neighbouring HFCcld are correlated 

at the limited spatial domain. Previous studies have shown that the approaches analogous to the convolutional implementation 

of sliding windows have a good ability to improve both the accuracy and the image quality of the merged LSTs (Ding et al., 

2022; Long et al., 2020; Zhang et al., 2019). Similar pixels (termed as S) need to meet the following criteria: (i) they are within 

the same sliding window as the target pixel, and (ii) their land cover type does not differ from the target pixel. Therefore, the 275 

target pixel itself is also a reference pixel. Eventually, the HFCcld of target pixel can be expressed as: 

cld-M-Aqua-T1 d ins Scld-S d ins

1

( , ) ( , )
ii

n

i

HFC t t wHFC t t
=

=  , (9) 

where n is the number of similar pixels; HFCcld-S denotes HFCcld-M-Aqua-T1 of the similar pixels; and ws is the contribution of 

similar pixels to M, which can be expressed as: 
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,  (10) 280 

where DS, HS and NS are the differences between the similar pixels and M in terms of the spatial distance, DEM and NDVI, 

respectively. 

 

Figure 3: Schematic of HFCcld convolutional optimization. 

3.4 Evaluation strategies 285 

First, the TRIMS LST was compared with LSTs derived from two reanalysis datasets (i.e., GLDAS and the independent ERA5-

Land) and retrievals from two different satellite TIR sensor (i.e., MODIS and the independent AATSR). In comparing different 

LSTs, samples with time differences greater than five minutes were excluded (Freitas et al., 2010; Göttsche et al., 2016; Jiang 

and Liu, 2014). The quantitative metrics used in comparison analyses include the mean bias deviation (MBD), standard 

deviation of bias (STD), and coefficient of determination (R2). 290 

Second, the TRIMS LST was validated under different weather conditions based on in-situ LSTs from the ground sites listed 

in Table I. The three metrics used the mean bias error (MBE), root-mean-square-error (RMSE), and R2. 

Third, the time series angle (TSA), inspired by the spectral angle that is widely used to measure the similarity between spectral 

curves (Kruse et al., 1993), was used to quantify the similarity of TRIMS LST time series to understand the reliability of the 

TRIMS LST during the temporal gap of the Aqua/MODIS. The TSA is defined as: 295 
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TRIMS-Aqua TRIMS-Terra1

TRIMS-Aqua TRIMS-Terra

cos
−

=


LST LST

LST LST
,(11) 

where θ is the TSA (unit: degree); LSTTRIMS-Aqua and LSTTRIMS-Terra are time series of TRIMS-Aqua and TRIMS-Terra LSTs, 

respectively. From this formula, we know that smaller TSA denotes higher similarity. 

Based on the CLCD described in Section 2.1, six subareas with a single land cover type and no land cover change in T1 and 

T2 (January 1 2000 to January 3 2005) were selected to extract the corresponding TRIMS-Terra and TRIMS-Aqua LST time 300 

series. These six subareas were termed A (82.30°N - 83.16°N, 39.63°E - 40.03°E, barren land), B (124.73°N - 125.17°N, 

51.51°E - 51.95°E, forest), C (111.84°N -112.30°N, 42.47°E - 42.85°E, grassland), D (100.78°N - 101.53°N, 39.92°E - 

40.44°E, barren land), E (98.14°N - 98.61°N, 33.92°E - 34.25°E, grassland), and F (91.73°N - 92.22°N, 31.7°E - 32.01°E, 

grassland). Then, the TSA was calculated to quantify the similarity between the TRIMS-Terra and TRIMS-Aqua LST time 

series. 305 

4. Results and discussion 

4.1 Comparison of the TRIMS LST with reanalysis data 

With the E-RTM method, TRIMS LST products from January 1 2000 to December 31 2021 were generated. The spatial 

resolution was 1 km. The temporal resolution was four observations per day, which is the same as the overpass time of 

Terra/MODIS and Aqua/MODIS. Figure 4 shows the daytime TRIMS-Aqua LST on DOY 1, 91, 181, and 271 as examples. 310 

For comparison purposes, the GLDAS LST (spatial resolution: 25 km) and ERA5-Land LST (spatial resolution: 10 km) were 

temporally interpolated to the Aqua overpass time and are also shown in Fig.4.  

Figure 4 shows that the TRIMS-Aqua LST has a similar spatial pattern as the GLDAS LST since the latter is an input for the 

former. Good agreement in the spatial pattern in different seasons can also be observed between TRIMS-Aqua LST and the 

independent ERA5- Land LST. A careful observation of Fig.4 demonstrates that the TRIMS LST is spatially seamless and its 315 

spatial patterns are as expected. Southern China as well as southeast Asia and the south Asian subcontinent in low latitudes 

are warm in all seasons because of additional absorbed solar radiation; the Tibetan Plateau, with much higher elevation and 

the regions in high latitudes is much cooler than other regions. In spring (DOY 1), summer (DOY 181), and autumn (DOY 

271), northwestern China, where the dominant land cover type is barren land, is much warmer than other regions. Further 

comparison indicates that TRIMS LST is generally slightly warmer than the GLDAS LST and the ERA5-Land LST. For 320 

example, on DOY 1 of 2000, the LSTs are generally below 278 K in the eastern Tibetan Plateau, while the GLDAS LST and 

the ERA5-Land LST are approximately 3-5 K lower. In the generation scheme of the TRIMS LST, the MODIS LST, which is 

generally warmer than the LST provided by reanalysis data, is an important input as well as a reference to ‘calibrate’ the 

GLDAS LST. This induces the ‘merged’ TRIMS LST to be warmer than the GLDAS LST as well as the ERA5-Land LST. 
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 325 
Figure 4: Spatial patterns of the daytime TRIMS-Aqua LST, GLDAS LST, and ERA5-Land LST in 2000.  

To further examine the image quality of the TRIMS-Aqua LST, Figure 5 shows the daytime TRIMS-Aqua LST, GLDAS LST, 

and ERA5-Land LST over the subarea (shown in Fig.4) at the Aqua overpass time in 2000. Due to limited space, Figure 5 only 

lists the results on DOY 1 (winter) and DOY 181 (summer). Compared with the GLDAS LST and the ERA5-Land LST, the 

TRIMS LST offers more spatial details because of its much higher spatial resolution. Thus, one can see clear terrain-induced 330 

temperature variations. Furthermore, Figure 5 shows that no evident spatial discontinuities exist in the TRIMS LST, indicating 

the E-RTM method performs satisfactorily in addressing the spatial scale mismatch between the MODIS LST and GLDAS 

LST (Zhang et al., 2021). 
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Figure 5: The daytime TRIMS-Aqua LST, GLDAS LST, and ERA5-Land LST over the subarea (shown in Fig.4) in 2000. 335 

4.2 Comparison of the TRIMS LST with satellite TIR LST products 

The daily TRIMS LST was compared with the independent ENVISAT/AATSR LST (from 2004 to 2012) and the Terra/Aqua 

MODIS LST (from 2000 to 2021 for Terra and from 2002 to 2021 for Aqua). Note that the AATSR and MODIS only have 

clear-sky LSTs. The density plots are shown in Fig.6. To facilitate the data processing and presentation, 1%/1‰ matched 

TRIMS-AATSR/MODIS pairs were randomly extracted. Figure 6 indicates good consistency between the TRIMS LST and 340 

AATSR/MODIS LST. Compared with AATSR, the overall MBD/STD values of TRIMS were 0.37 K/1.55 K and -0.44 K/1.22 

K for daytime and nighttime, respectively; compared with MODIS, the overall MBD/STD values were 0.09 K/1.45 K and -

0.03 K/1.17 K for daytime and nighttime, respectively. Figure.6 also shows that better agreements are observed during 

nighttime because of lower thermal heterogeneity. 

 345 
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Figure 6: Density plots between the TRIMS LST and satellite TIR LST. 

To further examine the deviation of the TRIMS LST from AATSR/MODIS LST, the MBD and STD values were calculated 

for each day. Figure 7 shows the corresponding histograms. For AATSR, the daily daytime MBD and STD were mainly 

concentrated in the ranges of 0 K - 0.60 K and 1.05 K - 1.15 K, respectively; the daily nighttime MBD and STD were mainly 350 

concentrated in the ranges of -0.40 K to 1.0 K and 0.75 K to 1.15 K, respectively. The positive deviation and negative deviation 

were consistent with those in Fig.6(a) and Fig.6(b). For the MODIS case, the daytime MBD was concentrated between -0.6 K 

and 1.0 K, and STD was concentrated between 1.0 K and 2.50 K; the nighttime MBD was concentrated between -0.6 K and 

0.3 K and STD was concentrated between 0.9 K and 1.50 K. As shown above, it should be concluded that the daily differences 

between the long-term TRIMS LST and AATSR/MODIS LST remain stable. 355 
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Figure 7: Histograms of the MBD and STD to compare the TRIMS LST and satellite TIR LST. 
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4.3 Validation results against in-situ LST 

The TRIMS LST was quantitative validated against the in-situ LST. Remove anomalies caused by transient environmental 

factors based on 3σ (standard deviation) filtering (Göttsche et al., 2016; Yang et al., 2020). Due to limited space, the results 360 

for all sites are not shown in the main text, and can be found in Table B1 and B2. The nineteen ground sites were divided into 

four groups according to locations and land cover types (Group Ⅰ: ARO, D105, DSL, EBA, MQU; Group Ⅱ: DET, GAZ, GOB, 

HZZ, SSW; Group Ⅲ: DAM, DXI, GUT, HLA, TYU; Group Ⅳ: CBS, DHS, QYZ, SDQ). Table II and Table III show the 

validation results of TRIMS LST against the in-situ LST under different weather conditions. In addition, the validation results 

of the clear-sky MODIS LST are provided for comparison.  365 

Table II: R2, MBE, and RMSE of the daytime validation for different groups.  

Group Land cover type Condition Amounts TRIMS LST MODIS LST 

MBE (K) RMSE (K) R2 MBE (K) RMSE (K) R2 

I Grassland Clear-sky 5370 0.26 2.15 0.95 0.61 2.37 0.95 

Cloudy 6972 0.41 2.18 0.96    

II Desert or bare land Clear-sky 5930 0.46 2.30 0.98 0.79 2.53 0.98 

Cloudy 5698 0.43 2.26 0.98    

III Farmland Clear-sky 5738 0.02 2.11 0.97 -0.21 2.52 0.95 

Cloudy 7570 0.04 2.11 0.97    

IV Forest Clear-sky 3170 0.55 2.46 0.97 0.72 2.38 0.98 

Cloudy 3655 0.68 2.27 0.98    

 
Table III: R2, MBE, and RMSE of the nighttime validation for different groups. 

Group Land cover type Condition Amounts TRIMS LST MODIS LST 

MBE (K) RMSE (K) R2 MBE (K) RMSE (K) R2 

I Grassland Clear-sky 8175 -0.70 1.65 0.98 -0.99 1.69 0.98 

Cloudy 5254 -0.13 1.64 0.97    

II Desert or bare land Clear-sky 6095 -0.64 1.43 0.99 -0.67 1.53 0.99 

Cloudy 5244 -1.17 1.85 0.99    

III Farmland Clear-sky 5314 -0.83 1.76 0.98 -0.75 1.60 0.98 

Cloudy 7243 -0.60 1.74 0.98    

IV Forest Clear-sky 2800 -0.98 1.92 0.98 -0.97 2.09 0.98 
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Cloudy 3332 -0.94 1.90 0.99    

 

Under clear-sky conditions, the TRIMS LST had an accuracy close to that of the MODIS LST as shown in Table II and Table 370 

III. The MBE of the TRIMS LST ranged from -0.98 K to 0.68 K and the RMSE was 1.43 K to 2.46 K. The RMSE of the 

TRIMS LST under clear-sky conditions was lower than that of the MODIS LST, except for Group IV. The RMSEs of the 

MODIS LST were reduced by 0.22 K (Group Ⅰ), 0.23 K (Group Ⅱ), and 0.41 K (Group Ⅲ) respectively. The nighttime results 

were generally better than the daytime results, with an average RMSE of 1.74 K. The R2 of the TRIMS LST for the four groups 

of sites were higher than 0.95 under clear-sky conditions, indicating that the TRIMS LST was in good agreement with the in-375 

situ LST. The improved accuracy of the TRIMS LST may be due to the reduction of the systematic bias of the original MODIS 

LST in the E-RTM method by extracting the LFC and HFC (Ding et al., 2022). 

For TRIMS LST under ckoudy conditions, the accuracy is marginally below that under clear-sky conditions, and the overall 

RMSE increased by 0.35 K. For the four groups of sites, the MBE values of TRIMS LST were -0.13 K (Group Ⅰ), -1.17 K 

(Group Ⅱ), -0.60 K (Group Ⅲ) and -0.94 K (Group IV),  revealing that the TRIMS LST was underestimated under cloudy 380 

conditions. According to the parameterization scheme of the E-RTM method, the accuracy of the estimated HFCcld under 

cloudy conditions is affected by the GLDAS LST, which has a negative deviation from the MODIS LST as shown in Section 

4.1. While the GLDAS LST is bias-corrected, uncertainty may still exist, which are ultimately detrimental to the accurate 

recovery of the LST for the cloud-contaminated region. Overall, the validation results indicate that TRIMS LST has good 

accuracy under cloudy conditions as well as under clear-sky conditions.. 385 

For ground sites in Group III with a dominant land cover type of desert or barren land, the nighttime validation shows that the 

TRIMS-Aqua LST was systematically underestimated, with an MBE of -1.17 K to -0.64 K. After checking the calculated μREP, 

we believe the spatial scale mismatch between the ground site and the pixel is not the main cause of the systematic 

underestimation. Further examination shows that the clear-sky MODIS LST is significantly underestimated: the MBEs of 

Aqua/MODIS LST were -1.88 K, -1.03 K, -1.33 K and -0.60 K for GOB, HZZ, SSW and GAZ, respectively. Such a cold bias 390 

in arid and semiarid regions was also been reported by Li et al. (2019) for the MYD11 LST product. The above results indicate 

that hat for TRIMS LST, the accuracy is largely dependent on the MODIS LST used. 

4.4 Quantification of the similarity between the TRIMS-Aqua LST and TRIMS-Terra LST time series during the 

temporal gaps 

The quantification results are shown in Fig.8. Overall, the trends in the time series of TRIMS-Terra and TRIMS-Aqua LST 395 

are very consistent, and they generally have a high degree of similarity. The daytime time series show that the TRIMS-Aqua 

LST was generally higher than the TRIMS-Terra LST, while the opposite was observed for the nighttime. I In particular, for 

subareas E and F, the TRIMS-Aqua LST showed a significant systematic deviation from the TRIMS-Terra LST during 

nighttime. The distribution of the curves in Fig.8 reveals that the daytime LST time series had more large fluctuations, while 

the nighttime variation was more subdued. The TSA was lower at nighttime than daytime, indicating that the time series 400 
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similarity between the TRIMS-Aqua LST and the TRIMS-Terra LST is higher at nighttime.  In addition, the TRIMS-Terra 

and TRIMS-Aqua LSTs were slightly more similar in the T1 than in T2 among these six regions. This situation is as expected, 

since the TRIMS-Aqua LST in T1 is derived from a mapping created by the data at the Terra overpass time. The differences 

in the TSA between T1 and T2 ranged from 0.0080 to 0.0710. The mean differences were 0.0465 (daytime) and 

0.0433(nighttime). The above results indicate that the similarity of the LST time series of T1 and T2 is relatively close. This 405 

finding demonstrates that the difference between TRIMS LST at the Aqua and Terra overpass times is stable in T1. 

 

Figure 8: TRIMS-Terra and TRIMS-Aqua LSTs from January 1, 2000 to January 3, 2005 and statistics of the time series similarity. 

4.4 Literature-reported applications of the TRIMS LST 

TRIMS LSTs have already been utilized by the scientific communities in different applications (Fig.9). A literature survey 410 

indicates that there have been 28 related papers published by journals (as of January 13, 2023), including leading journals such 

as Remote Sensing of Environment, Agricultural Water Management, and Science of the Total Environment. Typical 
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applications include the estimation of soil moisture and surface evapotranspiration as well as modelling of urban heat is land 

and urban thermal environment. A few typical applications are listed below. 

 415 

Figure 9: Statistics of applications based on TRIMS LST (AT: Air temperature; CC: Climate change; ET: Evapotranspiration; FS: 

Frozen soil; IHS: Industrial heat sources; Others: Active layer thickness, Lake Area, Land desertification, and LST downscaling; 

PP: Plant Phenology; SFT: Soil freeze/thaw; SM: Soil moisture; TIREP: Thermal Infrared Earthquake Prediction; UHI: Urban 

heat island; UTE: Urban Thermal Environment.).  

Satellite TIR LSTs are an important input data for obtaining SM estimates with high resolution and high spatial coverage. 420 

However, most satellite TIR LST products can only be used under clear-sky conditions. The availability of all-sky LST 

products provides an important opportunity to obtain SMs with spatial seamlessness. Zhang et al. (2023) combined the use of 

ERA5-Land and TRIMS LST for the fine-scale assessment of soil moisture in in China. They used the model based on 0.1° 

ERA5 Land and SSM data for 1-km TRIMS LST, and finally obtained a daily/1-km SM dataset with satisfactory accuracy. 

Benefiting from the effective recovery of LST under cloudy conditions, this SM dataset has quasi-full spatial coverage. In 425 

addition, Hu et al. (2022) also used the TRIMS LST as input data to construct a soil moisture downscaling model for the 

Tibetan Plateau. The TRIMS LST was found to successfully overcome the challenges of satellite TIR remote sensing detection 

due to temporal/spatial gaps and false detections due to clouds and topography. Based on the downscaled soil moisture, they 

further published the daily 0.05°×0.05° land surface soil moisture dataset of the Qilian Mountain area (northern and 

northwestern Tibetan Plateau) from 2019-2021 (SMHiRes, V2) (Hu et al., 2022; Qu et al., 2021; Chai et al., 2021, 2022a, b). 430 

LST can also be used to investigate the soil freeze/thaw cycles. Li et al. (2023) used the TRIMS LST to obtain thawing degree 

days and freezing degree days to calculate the soil thermal conductivity and improved the output of the temperature at the top 

of the permafrost model. Due to the characteristics of TRIMS LST: high spatial and temporal resolution, the above two metrics 

can be easily obtained on a spatial scale of 1 km. In addition, the TRIMS LST was also used to evaluate the impact of the LST 

on the classification accuracy on different remote-sensed or model-based freeze/thaw datasets (Li et al., 2022). 435 

Based on the TRIMS LST, Li et al. (2021b) investigated the spatial and temporal variations of surface UHI (SUHI) intensity 

(SUHII). The positive performance of the TRIMS LST in obtaining the LST under cloudy conditions enabled the examination 

of the SUHI intensity of 305 Chinese cities, especially the cities located in southern China, where clouds frequently appear. 
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Furthermore, Liao et al. (2022) quantified the clear-sky bias of the SUHI intensity in using the MODIS LST based on the 

TRIMS LST. They emphasized the importance of investigating the SUHI phenomenon under cloudy conditions. 440 

5. Data availability 

TRIMS LST is available for free and easy access through TPDC: https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 

2021).  

6. Conclusions 

A long-term 1-km daily all-weather LST dataset is the basis for supporting many applications related to land surface process 445 

and climate change. Although some all-weather LST datasets have been released, especially in the last two years, users still 

lack such data for the period of 2000-2002, during which the MODIS LST is not available. In this study, we report a daily 1-

km all-weather LST dataset for the Chinese landmass and surrounding areas – TRIMS LST. In contrast to many all-weather 

LST products, the TRIMS LST begins from the first day of the new millennium (i.e., January 1, 2000).  

TRIMS LST is produced based on the E-RTM method. The primary input resources are the Terra/Aqua MODIS LST and 450 

GLDAS LST. The TRIMS LST was comprehensively evaluated thoroughly from four aspects, including comparison with 

satellite and reanalysis LSTs, validation against the in-situ LSTs, and similarity quantification for the TRIMS-Terra and 

TRIMS-Aqua LST time series. The results indicate that the TRIMS LST agrees well with the original MODIS and GLDAS 

LSTs and the independent ERA5 and AATSR LSTs, but with more spatial details and better spatio-temporal completeness. 

Validation of TRIMS LST using the in-situ LST at 19 ground sites showed that the MBE was -2.26 K to 1.73 K and the RMSE 455 

was 0.80 K to 3.68 K, with slightly better accuracy than the MODIS LST and no obvious difference under different weather 

conditions. 

The TRIMS LST has been released to the scientific communities. A series of applications, such as soil moisture 

estimation/downscaling, surface evapotranspiration estimation, and urban heat island (UHI) modelling, have been reported. 

The TRIMS LST was found to  successfully address the cloud contamination of satellite TIR LST and with good accuracy, 460 

long time series, and spatio-temporal completeness. The TRIMS LST will be continuously updated to satisfy the latest 

requirements of users. 
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Appendix A: List of abbreviations 

Land surface temperature LST 

the Thermal and Reanalysis Integrating Moderate-resolution Spatial- seamless LST TRIMS LST 

the Enhanced Reanalysis and Thermal infrared remote sensing Merging method E-RTM 

Thermal infrared remote sensing TIR 

Moderate Resolution Imaging Spectroradiometer MODIS 

Visible infrared Imaging Radiometer  VIIRS 

Passive microwave (PMW) 

Advanced Microwave Scanning Radiometer 2 AMSR2 

Normalized Difference Vegetation Index NDVI 

Normalized Difference Snow Index NDSI 

Advanced Synthetic Aperture Radar AATSR 

Shuttle Radar Topography Mission Digital Elevation Model data SRTM DEM 

30-m yearly China land cover dataset (2000-2015) CLCD 

Global Land Data Assimilation System assimilation GLDAS 

the Goddard Earth Sciences Data and Information Services Center  GES DISC 

Field-of-view  FOV 

Mean bias deviation MBD 

Standard deviation of bias/ STD 

Mean bias error MBE 

Root mean square error RMSE 

Time series angle TSA 

Day of the year DOY 

Random-Forest based Spatio-Temporal Merging approach RFSTM 

Time-Sequential LST based Reconstruction approach TSETR 

Urban heat island  UHI 

Soil moisture SM 

Evapotranspiration  ET 

Surface UHI SUHI 

Surface UHI intensity SUHII 
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Appendix B: R2, MBE, and RMSE from validation results of the TRIMS LST and the MODIS LST with the in-situ 

LST 

Table B1: R2, MBE, and RMSE from validation results of the daytime TRIMS LST and MODIS LST with in-situ LST 

Site Condition Sample size TRIMS LST MODIS LST 

MBE (K) RMSE (K) MBE (K) RMSE (K) 

MOD MYD MOD MYD MOD MYD MOD MYD MOD MYD 

ARO clear 1418 1029 0.43 0.48 2.30 1.87 0.74 0.57 2.95 2.38 

cloudy 1228 1541 0.33 0.61 2.04 1.95 — — — — 

DAM clear 1363 1297 0.97 0.26 1.92 1.98 0.98 0.27 2.31 2.50 

cloudy 1432 1492 0.67 0.18 1.81 2.07 — — — — 

DET clear 1191 1180 1.73 1.45 2.45 2.49 1.73 1.88 2.70 2.70 

cloudy 830 896 1.70 1.45 2.67 2.43 — — — — 

DSL clear 1109 814 -0.01 -0.33 1.82 1.72 0.00 -0.32 2.38 2.28 

cloudy 1198 1144 -0.01 0.48 1.91 1.65 — — — — 

EBA clear 410 289 0.63 0.59 2.06 1.90 0.65 0.53 2.38 2.31 

cloudy 472 580 0.74 0.61 2.01 1.80 — — — — 

GOB clear 363 350 -0.58 -1.88 1.73 2.41 -0.61 -1.89 2.25 2.74 

cloudy 368 390 -0.96 -1.65 1.72 2.71 — — — — 

HZZ clear 1046 975 1.06 -1.03 1.84 2.06 1.05 -1.04 2.40 3.14 

cloudy 1219 1354 0.59 -0.66 1.78 2.05 — — — — 

SDQ clear 1507 1466 0.82 0.23 2.57 2.05 0.81 0.39 3.16 2.57 

cloudy 1147 1132 0.86 0.37 2.49 2.23 — — — — 

SSW clear 191 174 -0.42 -1.33 2.09 2.08 -0.43 -1.35 3.10 2.51 

cloudy 194 203 -1.23 -1.77 2.36 2.45 — — — — 

HLA clear 1121 946 -0.79 -0.85 2.30 2.18 -0.74 -0.71 2.76 2.60 

cloudy 1084 1159 -0.68 -0.75 2.68 1.81 — — — — 

D105 clear 92 44 1.61 1.28 3.68 2.53 1.36 0.67 4.09 2.71 

cloudy 178 138 1.29 0.61 3.94 2.74 — — — — 

GAZ clear 220 240 0.74 -0.60 2.12 2.17 0.47 -0.55 2.37 2.82 
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cloudy 89 157 1.15 -0.85 2.11 1.96 — — — — 

CBS clear 54 56 0.49 1.38 2.41 3.41 0.85 1.49 2.39 3.43 

cloudy 220 262 0.76 1.59 2.42 3.43 — — — — 

DXI clear 246 226 0.83 0.30 2.13 1.79 0.80 0.28 2.33 2.00 

cloudy 547 562 0.81 0.54 2.19 1.79 — — — — 

DHS clear 23 21 0.38 0.77 1.37 1.53 0.30 0.74 0.74 1.18 

cloudy 292 299 0.42 0.47 1.51 1.22 — — — — 

MQU clear 101 64 0.15 -1.50 2.43 2.85 0.12 -1.47 3.05 3.13 

cloudy 77 117 0.05 -1.35 2.27 2.99 — — — — 

GUT clear 69 63 -0.22 0.02 2.10 2.25 -0.29 -0.07 2.20 2.25 

cloudy 310 303 -0.28 0.60 1.83 2.22 — — — — 

QYZ clear 26 19 0.95 1.01 3.00 3.17 0.73 0.90 2.35 2.14 

cloudy 139 177 0.71 0.91 2.71 3.35 — — — — 

TYU clear 211 196 0.37 -0.88 2.56 2.14 0.31 -0.90 3.01 2.63 

cloudy 333 348 0.19 -0.58 2.63 2.03 — — — — 

 

Table B2: R2, MBE, and RMSE from validation results of the nighttime TRIMS LST and MODIS LST with the in-situ LST.  470 

Site Condition Sample size TRIMS LST MODIS LST 

MBE (K) RMSE (K) MBE (K) RMSE (K) 

MOD MYD MOD MYD MOD MYD MOD MYD MOD MYD 

ARO clear 1617 1757 -0.72 -0.53 1.87 1.67 -0.70 -0.60 2.09 1.90 

cloudy 1196 1078 -0.68 -0.63 1.62 1.76 — — — — 

DAM clear 853 973 -0.80 -0.58 2.14 1.70 -0.82 -0.81 2.23 1.87 

cloudy 1643 1673 -0.86 -0.52 1.98 1.64 — — — — 

DET clear 1325 1476 -0.08 0.17 0.83 0.90 -0.08 0.16 0.86 0.97 

cloudy 679 630 0.42 -0.23 0.80 0.83 — — — — 

DSL clear 1109 1646 -0.90 -0.84 1.82 1.50 -0.45 -0.42 1.92 1.78 

cloudy 1198 797 -1.13 0.44 1.91 1.24 — — — — 

EBA clear 566 621 -0.61 -0.60 1.65 2.00 -0.58 -0.64 1.77 2.19 

cloudy 443 404 -0.55 -0.64 1.56 1.68 — — — — 
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GOB clear 467 381 -1.60 -1.65 2.05 1.93 -1.62 -1.65 1.96 1.96 

cloudy 376 321 -2.04 -1.51 2.26 1.79 — — — — 

HZZ clear 772 944 -1.29 -0.94 1.86 1.46 -1.28 -0.93 2.03 1.65 

cloudy 1348 1296 -1.77 -1.36 2.32 1.86 — — — — 

SDQ clear 1557 1286 -0.79 -0.94 2.61 2.33 -1.02 -0.93 2.68 2.44 

cloudy 1112 981 -1.06 -0.94 2.70 2.15 — — — — 

SSW clear 172 164 -2.26 -1.87 2.53 2.11 -2.27 -1.86 2.59 2.15 

cloudy 195 190 -1.95 -1.79 2.29 2.00 — — — — 

HLA clear 1042 1038 -0.82 -0.73 2.24 1.61 -0.85 -0.73 2.34 1.75 

cloudy 1066 989 -0.85 -0.87 2.24 1.55 — — — — 

D105 clear 131 167 -1.07 -0.92 2.39 2.57 -1.05 -1.12 2.58 2.69 

cloudy 95 121 -1.05 -1.10 2.81 2.74 — — — — 

GAZ clear 289 265 -0.63 -0.68 1.85 1.35 -0.68 -0.57 1.90 1.39 

cloudy 124 86 -0.75 -0.69 1.80 1.32 — — — — 

CBS clear 95 98 -1.07 -0.55 2.81 2.21 -1.00 -0.50 2.79 2.26 

cloudy 190 208 -1.00 -0.33 3.31 2.37 — — — — 

DXI clear 334 349 -1.10 -1.45 3.43 3.06 -1.65 -1.44 3.51 3.13 

cloudy 454 446 -1.15 -1.42 3.77 2.58 — — — — 

DHS clear 53 53 -0.82 -0.74 1.97 2.31 -0.74 -0.89 1.83 2.22 

cloudy 264 262 -0.81 -0.89 2.35 2.30 — — — — 

MQU clear 85 81 0.68 0.78 2.23 2.41 0.76 0.70 2.16 2.40 

cloudy 105 90 0.81 0.76 2.32 2.53 — — — — 

GUT clear 122 126 -0.90 -0.76 2.14 1.80 -0.94 -0.78 2.19 1.81 

cloudy 237 230 -0.93 -0.70 2.49 1.78 — — — — 

QYZ clear 32 28 -0.90 -0.91 3.00 2.09 -1.16 -0.80 2.62 1.88 

cloudy 145 175 -1.13 -0.88 3.49 2.37 — — — — 

TYU clear 235 242 -1.12 -0.78 2.65 2.26 -0.94 -0.75 2.69 2.25 

cloudy 258 273 -1.13 -0.79 2.91 2.37 — — — — 
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